روش کار برقگیر و صاعقه گیر 2
توجه:
این آگهی منقضی شده است و به همین دلیل اطلاعات تماس آگهی دهنده نمایش داده نمیشود.
هشدار پلیس: لطفا پیش از انجام معامله و هر نوع پرداخت وجه، از صحت کالا یا خدمات ارائه شده، به صورت حضوری اطمینان حاصل نمایید.
هم بندی شبکه ی فلزی تجهیزات جانبی
EQUTPOTENTIAL BONDING OF EXTERNAL METALIC NET WORKS
راه دوم حفاظت تجهیزات جانبی ساختمان مانند سازه ی فلزی، لوله ها، سیستم هواساز و هم بندی آن ها و هم پتانسیل کردن با شبکه ی صاعقه گیر است. این حالت وقتی لازم است که نتوان فاصله ی S حفاظتی را در مورد این تجهیزات یا سیستم زمین آن ها رعایت نمود.
جهت هم پتانسیل کردن این تجهیزات، نیاز به هادی های مطمئن و دائمی با محاسبات سطح مقطع و مقاومت وجود دارد. تمامی تجهیزات قابل هم بندی مانند خطوط شبکه ی مخابراتی، اطلاعات، سازه ی فلزی، لوله های آب، گاز و غیره به وسیله ی هادی های مطمئن که حداقل سطح مقطع آن 16 است متصل و توسط هادی های پایین رو که به دیوار محکم شده اند، به جعبه ی هم بندی موسوم به Equipotential Box و از آنجا به آخرین نقطه ی یک شبکه ی برق گیر (قبل از ورود به الکترودهای زمین) که کلمپ تست نامیده می شود، وارد می شود. این اتصال که موسوم به هم بندی اضافه است، باید قابل باز نمودن جهت تست های خاص، و محل و ارتفاع آن مناسب جهت بازدیدهای دائمی باشد. با این عمل تمامی تجهیزات یاد شده از خطر جرقه ناشی از صاعقه (Flash Point) محفوظ می مانند. اما با این عمل می باید سیستم های حساس مانند کامپیوتر، شبکه ی IT و شبکه ی مخابراتی به همراه تجهیزات مربوطه توسط surge arrester محافظت گردد. (شکل 7)
بررسی سیستم زمین صاعقه گیر SYSTEM EARTH TERMINATION :
نگاه اجمالی: در هر سیستم برق گیر، تمامی پتانسیل سیستم در جذب و انتقال صاعقه به زمین نهاد شده است. در این سیستم جذب صاعقه به وسیله ی هادی های میله ای یا شبکه، انجام و جریان جذب شده توسط هادی های پایین رو به شبکه ی زمین انتقال داده می شود. در شبکه ی زمین که شامل الکترودها، اتصالات و هادی های مسی است، انتقال این جریان به زمین در کمترین زمان صورت می پذیرد. تفاوت سیستم زمین در یک برق گیر با شبکه ی ارت سیستم برق ساختمان نیز به همین دلیل است. در شبکه ی برق گیر بار استاتیک باید در سطح زمین گسترده شود تا بارهای غیر همنام اثر یکدیگر را خنثی (بار منفی ابر و مثبت زمین) کنند، اما در سیستم برق ساختمان جهت انتقال جریان نشتی از طریق شبکه ی زمین به نقطه ی خنثی ترانفسورماتور باید الکترود ارت به طریق خاص باشد.
هر سیستم زمین مربوط به صاعقه گیر در سه قسمت بررسی شده است:
الف: در فرانسه و اکثر کشورهای پیشرفته ی دنیا، مقاومت حداکثر 10 اهم جهت سیستم زمین هر صاعقه گیر پیشنهاد می شود. اندازه گیری این مقدار با باز کردن کلمپ تست و اندازه گیری مقاومت الکترودهای زمین به روش های 2 سیمه و 4 سیمه انجام پذیر است. در صورتی که مقاومت 10 اهم مورد نیاز در این قسمت حاصل نگردد، استاندارد پیشنهاد افزایش طول الکترودهای زمین، نصب میله های ارت در خاتمه هادی های زمین الکترودها و استفاده از الکترولیت های مجاز مانند سولفات ها، بنتونیت و غیره را داده است.
افزایش طول هادی زمین (الکترودها) تا 100 متر یعنی هر هادی تا 20 متر نیز مجاز است.
ب: توانایی هدایت جریان
جهت افزایش توانایی حمل جریان توسط هادی زمین، نیاز به سه هادی (الکترود) به جای یک الکترود پیشنهادی استاندارد است. افزایش تعداد هادی ها موجب افزایش طول هادی و دمپ سریع تر جریان صاعقه می گردد.
ج: هم بندی اضافه (هم پتانسیل کردن)
استاندارد نیاز به یک هم بندی اضافه جهت هم پتانسیل کردن در سیستم برق گیر و سیستم ارت ساختمان را لازم و ضروری می داند.
بازرسی های سیستم صاعقه گیر: تمامی اجزای یک برق گیر از میله تا سیستم زمین نیاز به بازرسی های دوره ای و اندازه گیری مقاومت دارند. فرایند تست و بازرسی به شرح زیر است:
سیستم حفاظت با سطح بالا (لول یک) سالیانه؛
سیستم حفاظت با سطح خوب (لول دو) دو ساله؛ و
سیستم حفاظت با سطح معمول سه ساله.
در ضمن پس از هرگونه تعمیرات ساختمان یا اصابت صاعقه بر سیستم، باید بازرسی و تست ها مجدداً انجام پذیرد.
انواع الکترودهای زمین در سیستم صاعقه گیر
ابتدا سیستم الکترود زمین در صاعقه گیر ساده ESE بررسی می شود:
1- الکترودهای سه گانه (پنجه اردکی): در این سیستم سه شمش مسی با ابعاد 2×30 میلی متر به صورت پنجه اردک است. هر کدام از شمش ها فاصله ی 45 درجه با شمش وسطی دارند و (حداکثر) طول کل شمش ها 25 متر است و به سه قسمت – یکی از شمش ها حدود 2 متر بلندتر است – تقسیم می شوند.
دو شمش کناری با زاویه ی 45 درجه به شمش وسط در انتها با استفاده از کلمپ مسی یا کدولد وصل می گردند. شمش وسط پس از ارتباط با شمش دیگر به طرف نقطه ی تست ادامه می یابد (شکل 8). طول الکترودهای زمین بستگی به مقاومت زمین دارند و از 6 متر به بالا ادامه می یابند.
2- میله های ارت: در صورتی که جغرافیای ساختمان اجازه ی استفاده از شبکه ی پنجه اردکی را ندهد، می توان از سیستم مثلث متساوی الاضلاع با طول هر ضلع 2 متر که میله ی ارت به انتهای هر زاویه متصل شده است، استفاده نمود. طول میله ی ارت 2 متر است. هر میله با زاویه ی مربوطه کلمپ یا جوش کدولد می گردد (شکل 9).
3- سیستم ترکیبی: در صورتی که عمل الکترودهای زمین دارای وسعت باشد، می توان جهت کاهش مقاومت زمین از ترکیب شبکه ی پنجه اردکی و میله ارت (در انتها) استفاده نمود (شکل 10).
شبکه ی زمین در صاعقه گیر شبکه ای (شبکه قفسه ای)
در برق گیر نوع شبکه ی قفسه ای از دو سیستم پنجه اردکی و میله ی ارت می توان استفاده نمود.
1- شبکه ی ارت پنجه اردکی: اتصالات به وسیله ی 3 تسمه ی مسی 2×30 میلی متر که یکی از تسمه ها بزرگ تر است و دو عدد دیگر با زاویه ی 45 درجه در انتها به شمش اصل جوش کدولد و یا کلمپ می گردند، صورت می پذیرد. طول مفید هر یک از هادی ها 2 متر و در عمق 60 تا 80 سانتی متری زمین دفن می گردند.
2- میله های ارت: در این حالت میله های ارت به صورت عمودی به طول 2 متردر داخل زمین کوبیده می شوند. فاصله ی آن ها 2 متر از یکدیگر و فاصله از پی یک تا 5/1 متر است. این دو میله به وسیله ی شمش مسی 2×30 به یکدیگر کلمپ و یا جوش داده می شوند (شکل 11).
علت تفاوت شبکه ی زمین در دو سیستم صاعقه گیر ESE و شبکه ی قفسه ای به خاطر احتمال جذب صاعقه ی آن ها است.
تجهیزات سیستم ارت در صاعقه گیر
EARTH SYSTEM EQUIPMENT BONDING
هنگامی که دریک ساختمان سیستم زمین جهت تجهیزات برق نصب می گردد، می توان سیستم برق گیر را در نقطه ی خاص به نام کلمپ هم بندی ولتاژ به این سیستم وصل نمود. این نقطه ی اتصال نزدیک ترین نقطه ی به هادی پایین رو است. در صورتی که امکان وصل این قسمت نباشد، می توان سیستم برق گیر را مستقیم به هادی زمین وصل نمود. اما اتصال باید به طریقی باشد که جریان القائی صاعقه بر روی کابل های برق اثر گذار نباشد. در اتصال به نقطه ی هم پتانسیل (هم بندی اضافه) باید بتوان نقطه ی اتصال را جهت تست مقاومت اهمی و جریان جدا نمود. همچنین نقاط قابل دید و تست دوره ای باشند.
فواصل مجاز بین هادی های سیستم صاعقه گیرو انشعابات برق، آب، گاز زیرزمین:
بر طبق استاندارد NFC فواصل مجاز بین تمامی هادی های شبکه ی صاعقه گیر و سیستم انشعاب برق و آب و گاز و کابل های زیرزمینی بر طبق جدول وجود داشته باشد. این فواصل برای تمامی اجزای فلزی صادق است و اجزای غیر فلزی را شامل نمی شود (جدول 4)
ارزیابی ریسک (احتمال) برخورد صاعقه
بر طبق پیشنهاد استاندارد NFC مطالعه ی صاعقه در سه قسمت انجام می پذیرد.
1. ارزیابی ریسک صاعقه
2. بررسی سطح حفاظت
3. بررسی شیوه ی حفاظت
بررسی ریسک صاعقه (احتمال برخورد صاعقه به ساختمان)
در بررسی احتمال برخورد صاعقه، روش مورد استفاده به صورت زیر است.
1- تعداد مورد انتظار برخورد صاعقه با برق گیر که به Ng شناخته می شوند.
که در این فرمول:
Ng: حداکثر تعداد صاعقه هایی است که به واحد سطح در این منطقه برخورد می کند (تعداد صاعقه / کیلومتر مربع / سال)؛ و Ngman=2Ng
که می توان آن را به صورت زیر محاسبه نمود:
الف: استفاده از نقشه ی منطقه ی جغرافیائی
ب: استفاده از سطح ایزوکرونیک موج به Nk
که تقریباً برابر Nk/10 می شود.
محاسبه ی سطح (ایزوله) ساختمان بر حسب مترمربع Ae
در معرفی سطح زیر ساخت، همان تعداد صاعقه که به ساختمان اصابت می کند در نظر گرفته می شود. در پیوست استاندارد NFC 17-100, 17-102 محاسبات و جداول مربوطه ارائه شده است. ضریب بستگی به شرایط محیطی ساختمان دارد.
از نرم افزار ارائه شده توسط شرکت هلیتا محاسبات ریسک حریق ارائه شده است. همچنین این محاسبات در مجموعه های دیگر توسط سازندگان معروف ارائه گردیده است. شرکت فرس Furse نیز مجموعه محاسباتی خود را با توجه به ساختمان ارائه کرده است.
بررسی تعداد قابل انتظار برخورد صاعقه به ساختمان NC: (تعداد قابل تحمل صاعقه)
در بررسی احتمال برخورد صاعقه از فرمول زیر استفاده می شود.
: ضریب که بستگی به نوع ساختمان دارد.
: ضریب که بستگی به اجزاء ساختمان دارد.
: ضریب که بستگی به تجهیزات داخل ساختمان دارد.
: ضریب که بستگی به آثار و نتیجه ی برخورد و صاعقه به ساختمان دارد.
همچنین از طریق نرم افزار قابل محاسبه است.
سطح حفاظتی PROTECTION LEVEL :
در این حالت مقادیر مقایسه شده اند.
اگر کوچک تر یا مساوی باشد، در نتیجه نیاز به اجباری کردن نصب برق گیر نیست.
اگر بزرگ تر از باشد،نیاز به سیستم صاعقه گیر با سطح حفاظتی است.
مقادیر سطح حفاظتی، شعاع حفاظت برق گیر را مشخص می کند. فاصله ی ایمنی و پریود تعمیرات نیز توسط این سطح مشخص می گردد.
در بررسی نقشه مربوط به تعداد صاعقه در ایران بین صفر تا یک صاعقه (یک صاعقه /سال/ کیلومتر مربع) را می توان انتظار داشت.
EQUTPOTENTIAL BONDING OF EXTERNAL METALIC NET WORKS
راه دوم حفاظت تجهیزات جانبی ساختمان مانند سازه ی فلزی، لوله ها، سیستم هواساز و هم بندی آن ها و هم پتانسیل کردن با شبکه ی صاعقه گیر است. این حالت وقتی لازم است که نتوان فاصله ی S حفاظتی را در مورد این تجهیزات یا سیستم زمین آن ها رعایت نمود.
جهت هم پتانسیل کردن این تجهیزات، نیاز به هادی های مطمئن و دائمی با محاسبات سطح مقطع و مقاومت وجود دارد. تمامی تجهیزات قابل هم بندی مانند خطوط شبکه ی مخابراتی، اطلاعات، سازه ی فلزی، لوله های آب، گاز و غیره به وسیله ی هادی های مطمئن که حداقل سطح مقطع آن 16 است متصل و توسط هادی های پایین رو که به دیوار محکم شده اند، به جعبه ی هم بندی موسوم به Equipotential Box و از آنجا به آخرین نقطه ی یک شبکه ی برق گیر (قبل از ورود به الکترودهای زمین) که کلمپ تست نامیده می شود، وارد می شود. این اتصال که موسوم به هم بندی اضافه است، باید قابل باز نمودن جهت تست های خاص، و محل و ارتفاع آن مناسب جهت بازدیدهای دائمی باشد. با این عمل تمامی تجهیزات یاد شده از خطر جرقه ناشی از صاعقه (Flash Point) محفوظ می مانند. اما با این عمل می باید سیستم های حساس مانند کامپیوتر، شبکه ی IT و شبکه ی مخابراتی به همراه تجهیزات مربوطه توسط surge arrester محافظت گردد. (شکل 7)
بررسی سیستم زمین صاعقه گیر SYSTEM EARTH TERMINATION :
نگاه اجمالی: در هر سیستم برق گیر، تمامی پتانسیل سیستم در جذب و انتقال صاعقه به زمین نهاد شده است. در این سیستم جذب صاعقه به وسیله ی هادی های میله ای یا شبکه، انجام و جریان جذب شده توسط هادی های پایین رو به شبکه ی زمین انتقال داده می شود. در شبکه ی زمین که شامل الکترودها، اتصالات و هادی های مسی است، انتقال این جریان به زمین در کمترین زمان صورت می پذیرد. تفاوت سیستم زمین در یک برق گیر با شبکه ی ارت سیستم برق ساختمان نیز به همین دلیل است. در شبکه ی برق گیر بار استاتیک باید در سطح زمین گسترده شود تا بارهای غیر همنام اثر یکدیگر را خنثی (بار منفی ابر و مثبت زمین) کنند، اما در سیستم برق ساختمان جهت انتقال جریان نشتی از طریق شبکه ی زمین به نقطه ی خنثی ترانفسورماتور باید الکترود ارت به طریق خاص باشد.
هر سیستم زمین مربوط به صاعقه گیر در سه قسمت بررسی شده است:
الف: در فرانسه و اکثر کشورهای پیشرفته ی دنیا، مقاومت حداکثر 10 اهم جهت سیستم زمین هر صاعقه گیر پیشنهاد می شود. اندازه گیری این مقدار با باز کردن کلمپ تست و اندازه گیری مقاومت الکترودهای زمین به روش های 2 سیمه و 4 سیمه انجام پذیر است. در صورتی که مقاومت 10 اهم مورد نیاز در این قسمت حاصل نگردد، استاندارد پیشنهاد افزایش طول الکترودهای زمین، نصب میله های ارت در خاتمه هادی های زمین الکترودها و استفاده از الکترولیت های مجاز مانند سولفات ها، بنتونیت و غیره را داده است.
افزایش طول هادی زمین (الکترودها) تا 100 متر یعنی هر هادی تا 20 متر نیز مجاز است.
ب: توانایی هدایت جریان
جهت افزایش توانایی حمل جریان توسط هادی زمین، نیاز به سه هادی (الکترود) به جای یک الکترود پیشنهادی استاندارد است. افزایش تعداد هادی ها موجب افزایش طول هادی و دمپ سریع تر جریان صاعقه می گردد.
ج: هم بندی اضافه (هم پتانسیل کردن)
استاندارد نیاز به یک هم بندی اضافه جهت هم پتانسیل کردن در سیستم برق گیر و سیستم ارت ساختمان را لازم و ضروری می داند.
بازرسی های سیستم صاعقه گیر: تمامی اجزای یک برق گیر از میله تا سیستم زمین نیاز به بازرسی های دوره ای و اندازه گیری مقاومت دارند. فرایند تست و بازرسی به شرح زیر است:
سیستم حفاظت با سطح بالا (لول یک) سالیانه؛
سیستم حفاظت با سطح خوب (لول دو) دو ساله؛ و
سیستم حفاظت با سطح معمول سه ساله.
در ضمن پس از هرگونه تعمیرات ساختمان یا اصابت صاعقه بر سیستم، باید بازرسی و تست ها مجدداً انجام پذیرد.
انواع الکترودهای زمین در سیستم صاعقه گیر
ابتدا سیستم الکترود زمین در صاعقه گیر ساده ESE بررسی می شود:
1- الکترودهای سه گانه (پنجه اردکی): در این سیستم سه شمش مسی با ابعاد 2×30 میلی متر به صورت پنجه اردک است. هر کدام از شمش ها فاصله ی 45 درجه با شمش وسطی دارند و (حداکثر) طول کل شمش ها 25 متر است و به سه قسمت – یکی از شمش ها حدود 2 متر بلندتر است – تقسیم می شوند.
دو شمش کناری با زاویه ی 45 درجه به شمش وسط در انتها با استفاده از کلمپ مسی یا کدولد وصل می گردند. شمش وسط پس از ارتباط با شمش دیگر به طرف نقطه ی تست ادامه می یابد (شکل 8). طول الکترودهای زمین بستگی به مقاومت زمین دارند و از 6 متر به بالا ادامه می یابند.
2- میله های ارت: در صورتی که جغرافیای ساختمان اجازه ی استفاده از شبکه ی پنجه اردکی را ندهد، می توان از سیستم مثلث متساوی الاضلاع با طول هر ضلع 2 متر که میله ی ارت به انتهای هر زاویه متصل شده است، استفاده نمود. طول میله ی ارت 2 متر است. هر میله با زاویه ی مربوطه کلمپ یا جوش کدولد می گردد (شکل 9).
3- سیستم ترکیبی: در صورتی که عمل الکترودهای زمین دارای وسعت باشد، می توان جهت کاهش مقاومت زمین از ترکیب شبکه ی پنجه اردکی و میله ارت (در انتها) استفاده نمود (شکل 10).
شبکه ی زمین در صاعقه گیر شبکه ای (شبکه قفسه ای)
در برق گیر نوع شبکه ی قفسه ای از دو سیستم پنجه اردکی و میله ی ارت می توان استفاده نمود.
1- شبکه ی ارت پنجه اردکی: اتصالات به وسیله ی 3 تسمه ی مسی 2×30 میلی متر که یکی از تسمه ها بزرگ تر است و دو عدد دیگر با زاویه ی 45 درجه در انتها به شمش اصل جوش کدولد و یا کلمپ می گردند، صورت می پذیرد. طول مفید هر یک از هادی ها 2 متر و در عمق 60 تا 80 سانتی متری زمین دفن می گردند.
2- میله های ارت: در این حالت میله های ارت به صورت عمودی به طول 2 متردر داخل زمین کوبیده می شوند. فاصله ی آن ها 2 متر از یکدیگر و فاصله از پی یک تا 5/1 متر است. این دو میله به وسیله ی شمش مسی 2×30 به یکدیگر کلمپ و یا جوش داده می شوند (شکل 11).
علت تفاوت شبکه ی زمین در دو سیستم صاعقه گیر ESE و شبکه ی قفسه ای به خاطر احتمال جذب صاعقه ی آن ها است.
تجهیزات سیستم ارت در صاعقه گیر
EARTH SYSTEM EQUIPMENT BONDING
هنگامی که دریک ساختمان سیستم زمین جهت تجهیزات برق نصب می گردد، می توان سیستم برق گیر را در نقطه ی خاص به نام کلمپ هم بندی ولتاژ به این سیستم وصل نمود. این نقطه ی اتصال نزدیک ترین نقطه ی به هادی پایین رو است. در صورتی که امکان وصل این قسمت نباشد، می توان سیستم برق گیر را مستقیم به هادی زمین وصل نمود. اما اتصال باید به طریقی باشد که جریان القائی صاعقه بر روی کابل های برق اثر گذار نباشد. در اتصال به نقطه ی هم پتانسیل (هم بندی اضافه) باید بتوان نقطه ی اتصال را جهت تست مقاومت اهمی و جریان جدا نمود. همچنین نقاط قابل دید و تست دوره ای باشند.
فواصل مجاز بین هادی های سیستم صاعقه گیرو انشعابات برق، آب، گاز زیرزمین:
بر طبق استاندارد NFC فواصل مجاز بین تمامی هادی های شبکه ی صاعقه گیر و سیستم انشعاب برق و آب و گاز و کابل های زیرزمینی بر طبق جدول وجود داشته باشد. این فواصل برای تمامی اجزای فلزی صادق است و اجزای غیر فلزی را شامل نمی شود (جدول 4)
ارزیابی ریسک (احتمال) برخورد صاعقه
بر طبق پیشنهاد استاندارد NFC مطالعه ی صاعقه در سه قسمت انجام می پذیرد.
1. ارزیابی ریسک صاعقه
2. بررسی سطح حفاظت
3. بررسی شیوه ی حفاظت
بررسی ریسک صاعقه (احتمال برخورد صاعقه به ساختمان)
در بررسی احتمال برخورد صاعقه، روش مورد استفاده به صورت زیر است.
1- تعداد مورد انتظار برخورد صاعقه با برق گیر که به Ng شناخته می شوند.
که در این فرمول:
Ng: حداکثر تعداد صاعقه هایی است که به واحد سطح در این منطقه برخورد می کند (تعداد صاعقه / کیلومتر مربع / سال)؛ و Ngman=2Ng
که می توان آن را به صورت زیر محاسبه نمود:
الف: استفاده از نقشه ی منطقه ی جغرافیائی
ب: استفاده از سطح ایزوکرونیک موج به Nk
که تقریباً برابر Nk/10 می شود.
محاسبه ی سطح (ایزوله) ساختمان بر حسب مترمربع Ae
در معرفی سطح زیر ساخت، همان تعداد صاعقه که به ساختمان اصابت می کند در نظر گرفته می شود. در پیوست استاندارد NFC 17-100, 17-102 محاسبات و جداول مربوطه ارائه شده است. ضریب بستگی به شرایط محیطی ساختمان دارد.
از نرم افزار ارائه شده توسط شرکت هلیتا محاسبات ریسک حریق ارائه شده است. همچنین این محاسبات در مجموعه های دیگر توسط سازندگان معروف ارائه گردیده است. شرکت فرس Furse نیز مجموعه محاسباتی خود را با توجه به ساختمان ارائه کرده است.
بررسی تعداد قابل انتظار برخورد صاعقه به ساختمان NC: (تعداد قابل تحمل صاعقه)
در بررسی احتمال برخورد صاعقه از فرمول زیر استفاده می شود.
: ضریب که بستگی به نوع ساختمان دارد.
: ضریب که بستگی به اجزاء ساختمان دارد.
: ضریب که بستگی به تجهیزات داخل ساختمان دارد.
: ضریب که بستگی به آثار و نتیجه ی برخورد و صاعقه به ساختمان دارد.
همچنین از طریق نرم افزار قابل محاسبه است.
سطح حفاظتی PROTECTION LEVEL :
در این حالت مقادیر مقایسه شده اند.
اگر کوچک تر یا مساوی باشد، در نتیجه نیاز به اجباری کردن نصب برق گیر نیست.
اگر بزرگ تر از باشد،نیاز به سیستم صاعقه گیر با سطح حفاظتی است.
مقادیر سطح حفاظتی، شعاع حفاظت برق گیر را مشخص می کند. فاصله ی ایمنی و پریود تعمیرات نیز توسط این سطح مشخص می گردد.
در بررسی نقشه مربوط به تعداد صاعقه در ایران بین صفر تا یک صاعقه (یک صاعقه /سال/ کیلومتر مربع) را می توان انتظار داشت.